SYNTHESIS OF SOME NEW TYPES OF 3-COUMARINYL-SUBSTITUTED PYRAZOLOPYRIMIDINES AND IMIDAZOTHIAZOLES

V. Rajeswar Rao and V. Ravinder Reddy

The treatment of 3-[3-(dimethylamino)-1-oxo-2-propenyl]chromen-2-ones with 3-amino-4-cyanopyrazole gives 7-(2-oxo-2H-chromen-3-yl)pyrazolo[1,5-a]pyrimidine-3-carbonitriles. The reaction of 3-(2-bromoacetyl)coumarins with 2-amino-4-(methoxycarbonylmethyl)thiazole and 2-amino-4-methylthiazole gives methyl 2-(6-(2-oxo-2H-chromen-3-yl)imidazo[2,1-b]thiazol-3-yl)acetate and 3-(2-methylimidazo[2,1-b]thiazol-6-yl)-2H-chromen-2-ones, respectively.

Keywords: 3-acetylcoumarin, imidazothiazole, pyrazolopyrimidine.

Benzopyran-2-ones exhibit significant biological activities such as antifungal [1], anticoagulant [2], antibacterial [3], and insecticidal [4]. Coumarins bearing a heterocyclic moiety in position 3 are spasmolytic [5-7], uricosuric [8], and CNS active agents [9]. Pyrazolo[1,5-*a*]pyrimidines are very useful in the treatment of insomnia [10]. Promising anti-inflammatory, analgesic, anthelmintic, and antibacterial activities of a number of substituted imidazo[2,1-*b*]thiazoles [11] are described. In view of this, in continuation of our earlier work on the synthesis of heterocyclic systems from coumarin derivatives [12–14] we report here the synthesis of new 3-coumarinyl-substituted pyrazolopyrimidines and imidazothiazoles.

Condensation of 3-[3-(dimethylamino)-1-oxo-2-propenyl]chromen-2-ones**1a-d**with 3-amino-4-cyanopyrazole (**2**) in acetic acid resulted in the formation of <math>7-(2-oxo-2H-chromen-3-yl)pyrazolo-[1,5-a]pyrimidine-3-carbonitriles **3a-d**.

2-Aminothiazoles are known to react with 2-halo ketones to form imidazo[2,1-b]thiazoles through cyclization involving the 2-imino, carbonyl functions [15–17]; subsequently it was shown that the aryl group in these compounds was located in position 6 [18].

Accordingly, the treatment of 2-amino-4-(methoxycarbonylmethyl)thiazole (**5a**) and 2-amino-5-methylthiazole (**5b**) with various 3-(2-bromoacetyl)coumarins **4** under refluxing in anhydrous ethanol afforded the corresponding 2-(6-(2-oxo-2H-chromen-3-yl)imidazo[2,1-*b*]thiazol-3-yl)acetates **6a–e** and 3-(2-methylimidazo[2,1-*b*]thiazol-5-yl)-2H-chromen-2-ones **7**, respectively, in excellent yields (Scheme). 2-Amino-4-(methoxycarbonylmethyl)thiazole and 2-amino-5-methylthiazole are known to exist in equilibrium 8 = 8'.

During their reaction with 3-(2-bromoacetyl)coumarins the more nucleophilic cyclic secondary nitrogen atom in position 3 displaces the bromine of the former to give the intermediate ketone. The latter subsequently cyclized to give compounds **6** and **7**, respectively.

Department of Chemistry, National Institute of Technology, Warangal–506 004, India; e-mail: vrajesw@yahoo.com. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 3, pp. 465-471, March, 2008. Original article submitted June 08, 2006.

1, 3 a $R = R^{1} = H$, **b** R = Br, $R^{1} = H$; **c** R = Cl, $R^{1} = H$; **d** $R = R^{1} = Br$; **5 a** $R^{2} = CH_{2}COOMe$, $R^{3} = H$; **b** $R^{2} = H$, $R^{3} = Me$; **4, 6 a** $R = R^{1} = H$, $R^{2} = CH_{2}COOMe$; **b** R = Br, $R^{1} = H$, $R^{2} = CH_{2}COOMe$; **c** R = Cl, $R^{1} = H$, $R^{2} = CH_{2}COOMe$; **d** $R = R^{1} = Br$, $R^{2} = CH_{2}COOMe$; **a**-**d** $R^{3} = H$; **7 a** $R = R^{1} = R^{2} = H$, **b** R = Br, $R^{1} = R^{2} = H$, **c** R = Cl, $R^{1} = R^{2} = H$; **d** $R = R^{1} = Br$, $R^{2} = H$; **a**-**d** $R^{3} = Me$; **6e** $R^{2} = CH_{2}COOMe$, $R^{3} = H$; **7e** $R^{2} = H$, $R^{3} = Me$

Attempts to isolate the intermediate ketone failed.

The reaction of compounds 1 with 2 in acetic acid gave carbonitrile 3 (Scheme). The IR spectrum of compound 3a exhibited a strong absorption band at 2232 cm⁻¹ for the nitrile group, a strong absorption band at 1713 cm⁻¹ for the lactone carbonyl, and an absorption band at 1607 cm⁻¹ for C=N. The ¹H NMR spectrum of compound 3a exhibited a characteristic singlet at δ 8.82 for the pyrazole ring proton and a singlet for H-4 of coumarin at δ 8.87. The ¹³C NMR of compound 3a shows a characteristic signal for the nitrile carbon at δ 82.55 and a characteristic signal for the lactone carbonyl at δ 158.7.

Com-	Empirical	Found	<u>1, %</u>	M	X:-14 0/
pound*	formula	Calculated, %		мр, °С	i leiu, 70
		IN	5		
3a	$C_{16}H_8N_4O_2$	<u>19.32</u> 19.44	—	279-281	92
3b	$C_{16}H_7BrN_4O_2$	<u>15.21</u> 15.26	—	248-250	86
3c	$C_{16}H_7ClN_4O_2$	$\frac{17.42}{17.36}$	—	>300	88
3d	$C_{16}H_6Br_2N_4O_2$	$\frac{12.61}{12.56}$	—	270-272	76
3e	$C_{20}H_{16}N_{4}O_{2} \\$	$\frac{16.51}{16.56}$	—	>300	72
6a	$C_{17}H_{12}N_2O_4S$	$\frac{8.18}{8.23}$	$\frac{9.47}{9.42}$	228-230	68
6b	$C_{17}H_{11}BrN_2O_4S$	$\frac{6.60}{6.68}$	<u>7.56</u> 7.65	220-222	62
6c	$C_{17}H_{11}ClN_2O_4S$	$\frac{7.52}{7.47}$	$\frac{8.47}{8.54}$	250-252	65
6d	$C_{17}H_{10}Br_2N_2O_4S$	$\frac{5.7}{5.62}$	$\frac{6.36}{6.44}$	196-198	60
6e	$C_{21}H_{17}N_{2}O_{4}S \\$	$\frac{7.21}{7.18}$	$\frac{8.16}{8.21}$	278-280	66
7a	$C_{15}H_{10}N_2O_2S$	<u>9.85</u> 9.92	$\frac{11.22}{11.36}$	235-237	78
7b	$C_{15}H_9BrN_2O_2S$	$\frac{7.82}{7.76}$	$\frac{8.78}{8.88}$	220-222	68
7c	$C_{15}H_9ClN_2O_2S$	$\frac{8.79}{8.84}$	$\frac{10.02}{10.10}$	218-220	75
7d	$C_{15}H_8Br_2N_2O_2S$	$\frac{6.31}{6.37}$	<u>7.2</u> 7.29	210-212	68
7e	$C_{19}H_{12}N_{2}O_{2}S \\$	$\frac{8.38}{8.43}$	<u>9.7</u> 9.63	280-282	70

TABLE 1. Analytical data of compounds 3a-e, 6a-e, 7a-e

* All compounds were recrystallized from methanol.

TABLE 2. Spectral Characteristics of compounds 3a-e, 6a-e, and 7a-e

Com-	IR spectrum, v _{max} , c		n, v _{max} , cm ⁻	1	
pound	C=N	C=O (lactone)	C≡N (nitrile)	COO (ester)	¹ H NMR spectrum, δ , ppm (<i>J</i> , Hz)
1	2	3	4	5	6
3a*	1607	1713	2232	_	7.51 (1H, t, $J = 6$, Ar-H); 7.57 (1H, d, J = 9, Ar-H); 7.70 (1H, d, $J = 3$, Ar-H); 7.78 (1H, t, $J = 6$, Ar-H); 7.90 (1H, d, J = 9, Ar-H); 8.82 (1H, s, pyrazole); 8.87 (1H, s, H-4 of coumarin); 8.99 (1H d, $J = 6$ Ar-H)
3b	1608	1736	2235	_	7.56 (1H, d, $J = 9$, Ar-H); 7.67 (1H, d, $J = 3$, Ar-H); 7.90-7.94 (1H, m, Ar-H); 8.19 (1H, d, J = 3, Ar-H); 8.74 (1H, s, pyrazole); 8.88 (1H, s, H-4 of coumarin); 9.00 (1H, d, $J = 3$, Ar-H)
3c	1602	1727	2236	_	7.61-7.68 (2H, m, Ar-H); 7.84 (1H, d, <i>J</i> = 9, Ar-H); 8.07 (1H, s, Ar-H); 8.75 (1H, s, pyrazole); 8.88 (1H, s, H-4 of coumarin); 9.00 (1H, d, <i>J</i> = 3, Ar-H)
3d	1602	1738	2235	_	7.67 (1H, d, <i>J</i> = 6, Ar-H); 8.21 (1H, s, Ar-H); 8.34 (1H, s, Ar-H); 8.76 (1H, s, pyrazole); 8.89 (1H, s, H-4 of coumarin); 9.01 (1H, d, <i>J</i> = 3, Ar-H)

TABLE 2. (continued)

1	2	3	4	5	6
3e	1601	1728	2232	_	7.66-7.74 (3H, m, Ar-H); 8.09–8.36 (2H, m, Ar-H); 8.50-8.64 (2H, m, Ar-H); 8.92 (1H, s,
6a**	1605	1708	_	1733	pyrazole); 9.30 (1H, s, H-4 of coumarin); 9.46 (1H, d, J = 9, Ar-H) 3.69 (3H, s, OCH ₃); 4.17 (2H, s, CH ₂); 7.17 (1H, s, thiazole); 7.36-7.47 (2H, m, Ar-H); 7.58-7.63 (1H, m, Ar-H); 7.87 (1H, d, J = 6, Ar-H); 8.33 (1H, s, imidazole); 8.69 (1H, s, H-4 of coumarin)
6b	1602	1723	—	1732	3.65 (3H, s, OCH ₃); 4.18 (2H, s, CH ₂); 7.18 (1H, s, thiazole); 7.48–7.51 (2H, m, Ar-H); 7.74-7.76 (1H, m, Ar-H); 8.15 (1H, s, imidazole); 8.35 (1H s, H-4 of coumarin)
6с	1605	1728 (broad)	_	1728 (broad)	3.69 (3H, s, OCH ₃); 4.18 (2H, s, CH ₂); 7.18 (1H, s, thiazole); 7.49 (1H, d, $J = 9$, Ar-H); 7.62–7.65 (1H, m, Ar-H); 8.03 (1H, s, Ar-H); 8.36 (1H, s, imidazole); 8.67 (1H, s, H-4 of coumarin)
6d	1600	1692	_	1738	3.68 (3H, s, OCH ₃); 4.19 (2H, s, CH ₂); 7.19 (1H, s, thiazole); 8.09 (1H, d, <i>J</i> = 3, Ar-H); 8.30 (1H, s, Ar-H); 8.36 (1H, s, imidazole); 8.64 (1H, s, H-4 of coumarin)
6e	1588	1707	_	1729	3.70 (3H, s, OCH ₃); 4.2 (2H, s, CH ₂); 7.19 (1H, s, thiazole); 7.67 (2H, m, Ar-H); 7.76 (1H, t, <i>J</i> = 6, Ar-H); 8.10 (1H d, <i>J</i> = 9, Ar-H); 8.20 (1H, d, <i>J</i> = 9, Ar-H); 8.41 (1H, s, imidazole); 8.62 (1H, d, <i>J</i> = 9, Ar-H); 9.38 (1H, s, H-4 of coumarin)
7a	1605	1715	_	_	2.46 (3H, s, CH ₃); 7.35–7.44 (2H, m, Ar-H); 7.61 (1H, t, J = 6, Ar-H); 7.74 (1H, d, J = 9, Ar-H); 7.93 (1H, s, thiazole); 8.58 (1H, s, imidazole); 8.61 (1H, s, H-4 of coumarin)
7b	1602	1725	_	_	2.41 (3H, s, CH ₃); 7.48 (1H, d, J = 4.8, Ar-H); 7.70–7.73 (2H, m, Ar-H); 8.1 (1H, d, J = 3, Ar-H); 8.35 (1H, s, Ar-H); 8.58 (1H, s, H-4 of coumarin)
7c	1608	1733	—	_	2.42 (3H, s, CH ₃); 7.49–7.61 (2H, m, Ar-H); 8.14 (1H, d, <i>J</i> = 2.7, Ar-H); 8.37 (1H, s, Ar-H, thiazole); 8.61 (1H, s, imidazole); 8.79 (1H, s, H-4 of coumarin)
7d	1610	1737	—	—	2.43 (3H, s, CH ₃); 7.74 (1H, s, Ar-H, thiazole); 8.09 (1H, d, <i>J</i> = 3, Ar-H); 8.16 (1H, d, <i>J</i> = 2, ArH); 8.39 (1H, s, imidazole); 8.58 (1H, s, H-4 of coumarin)
7e	1603	1710	_	-	2.44 (3H, s, CH ₃); 7.65 (2H, t, $J = 6$, Ar-H); 7.77 (2H, m, Ar-H); 8.09 (1H, d, $J = 6$); 8.19 (1H, d, $J = 9$, Ar-H); 8.45 (1H, s, imidazole); 8.60 (1H, d, $J = 9$, Ar-H); 9.33 (1H, s, H-4 of coumarin).

^{* 13}C NMR, δ, ppm: 113.3, 114, 117.0, 117.4, 118.4, 126, 130, 135, 143.3, 148, 148.1, 151.2, 154.6, 154.7, 158.7.
^{*2 13}C NMR, δ, ppm: 33.3, 53.1, 112.2, 114, 116.7, 120.2, 125.6, 126.5, 129.5, 132, 137.2, 140.2, 150, 153, 159.5.

The mass spectrum of compound 3a shows a molecular ion peak at 288 (30%). In the mass spectra all the compounds gave molecular ion peaks. All the compounds were characterized on the basis of spectral data and elemental analysis (Tables 1–3).

Compound	ESI, m/z		
3a	$289 [M^+ + H]$		
6a	363 [M ⁺ + Na], 341 [M ⁺ + H]		
6e	413 [M ⁺ + Na], 391 [M ⁺ + H]		
7a	305 [M ⁺ + Na], 283 [M ⁺ + H]		
7b	363 [M ⁺ + H], 361 [M ⁺ + H]		

TABLE 3. Mass spectrum of compounds 3a, 6a,e, and 7a,b

The reaction of compound **4** with aminothiazole **5a** in ethanol under reflux at higher temperatures gave compounds **6** (Scheme). The IR spectrum of compound **6a** exhibited a strong absorption band at 1733 cm⁻¹ for ester carbonyl, a strong absorption band at 1708 cm⁻¹ for lactone carbonyl, and an absorption band at 1605 cm⁻¹ for C=N. The ¹H NMR spectrum of compound **6a** shows a characteristic singlet for the imidazole ring proton at δ 8.33 and a characteristic singlet for H-4 of coumarin at δ 8.69. The ¹³C NMR spectrum of compound **6a** shows a characteristic signal for the ester carbonyl at δ 169.8. The mass spectrum of compound **6a** showed a molecular ion peak at *m/z* 340.

The reaction of compound **4** with **5b** in ethanol at high temperatures gave compound **7**. The IR spectrum of compound **7a** exhibited strong absorption bands at 1715 for the lactone carbonyl and 1605 cm⁻¹ for C=N. The ¹H NMR spectrum of compound **7a** exhibited a characteristic singlet at δ 8.61 for the H-4 of coumarin. The mass spectrum of compound **7a** shows the molecular ion peak at 282 (100%).

In summary, efficient syntheses of 3-coumarinyl-substituted imidazo[2,1-b]- thiazoles have been described.

EXPERIMENTAL

All melting points were determined by a POLMAN-MP apparatus (Model No. MP-96). IR spectra were recorded on a Perkin-Elmer spectrophotometer. ¹H NMR spectra were recorded on a 300 MHz instrument in DMSO- d_6 , using TMS as an internal standard. Mass spectra were scanned on a Perkin-Elmer SCIEX API-2000 instrument (ESI). The purity of all compounds was established by TLC analysis using Merck precoated silicagel $60F_{254}$ plates (0.2 mm thickness).

The enaminones 1 were smoothly obtained by heating 3-acetylcoumarins with dimethylformamide dimethylacetal [19] (DMF DMA).

Methyl α -bromoacetoacetate [20] on treatment with thiourea afforded 2-amino-4-(2-methoxycarbonyl-methyl)thiazole **5a** [21] in good yield.

7-(2-Oxo-2H-chromen-3-yl)pyrazolo[1,5-*a*]pyrimidine-3-carbonitriles 3a–e (General Method). 3-[3-(Dimethylamino)-1-oxo-2-propenyl]chromen-2-one (1a) (0.01 mol) was added to a suspension of 3-amino-4-cyanopyrazole 2 (0.01 mol) in acetic acid (10 ml) at ambient temperature. The reaction mass was heated to 60° C for 1 h, and the reaction progress was monitored by TLC (mobile phase: ethyl acetate–hexane, 4:6). After completion of the reaction, the reaction mass was cooled to 20° C. The product 3a was filtered off and recrystallized from methanol.

Compounds 3b-e were prepared by a similar method; in the case of 3e compound 1 was replaced by the analogous benzo[*f*]coumarin derivative.

Methyl 2-(6-(2-oxo-2H-chromen-3-yl)imidazo[2,1-b]thiazol-3-yl)acetates 6a-e (General Method). A mixture of 3-(2-bromoacetyl)coumarin (0.01 mol) and methyl 2-(2-aminothiazol-4-yl)acetate (5a) (0.01 mol) was refluxed in ethanol (25 ml) for 1 h. The reaction progress was monitored by TLC (mobile phase: ethyl acetate–hexane, 1:1). After completion of reaction, the reaction mixture was cooled to 20–25°C. Product 6a was filtered off, washed with 5% w/w aqueous NaHCO₃ solution, and recrystallized from methanol.

Compounds 6b-e were prepared by a similar method. For the preparation of **6e** 3-bromo-acetylbenzo[*f*]coumarin was used.

3-(2-Methylimidazo[2,1-*b***]thiazol-6-yl)-2H-chromen-2-ones 7a-e (General Method).** A mixture of 3-(2-bromoacetyl)coumarin (0.01 mol) and 2-amino-4-methylthiazole (0.01 mol) was refluxed in ethanol (25 ml) for 1 h. The reaction progress was monitored by TLC (mobile phase: ethyl acetate–hexane, 1:1). After completion of the reaction, the reaction mixture was cooled to 20–25°C. Product 7a was filtered off, washed with 5% w/w aqueous sodium bicarbonate solution, and recrystallized from methanol.

Compounds 7b-e were prepared by a similar method. Compound 7e was prepared from 3-bromo-acetylbenzo[f]coumarin.

REFERENCES

- 1. N. K. Sangwan, B. S. Verma, O. P. Malk, and K. S. Dhindsa, *Indian J. Chem.*, 29B, 294 (1990).
- 2. M. A. Stahman, C. F. Huebner, and K. P. Link, J. Biol. Chem., 138, 517 (1941).
- 3. S. S. Hanmantgad, M. V. Kulkarni, and V. D. Patil, *Indian J. Chem.*, 24B, 45 (1985).
- 4. J. D. Hepworth, in: *Comprehensive Heterocyclic Chemistry*, J. A. Boulton, A. Mackillop (editors), Pergamon Press Oxford, Vol. 3, 737 (1984).
- 5. P. Vijay Kumar and S. S. Joshi, *Indian J. Appl. Chem.*, 26, 149 (1963).
- 6. R. S. Thakur, *Experientia*, **34**, 158 (1978).
- 7. N. T. Pryanishnikova, I. V. Chernyankova, L. I. Misailova, V. L. Savel'iev, O. S. Artamonova, T. G. Afanas'eva, and V. A. Zagorevskii, *Khim. Farm. Zh.*, **12**, 58 (1978).
- 8. W. Baker and C. S. Howese, J. Chem. Soc., 119 (1953).
- 9. T. Nakabayashi, H. Miyazaki, and T. Takaroyama, J. Pharm. Soc., Japan, 13, 565 (1953).
- 10. C. Mustazza, M. R. Del Giudice, A. Borioni, and F. Gatta, J. Heterocycl. Chem., 38, 1119 (2001).
- 11. S. P. Singh, S. N. Sawhney, and R. K. Tomer, *Indian J. Chem.*, **16B**, 334 (1978).
- 12. V. Rajeswar Rao and V. Ravinder Reddy, *Heterocycl. Commun.*, 10, 110 (2004).
- 13. V. Rajeswar Rao and P. Vijay Kumar, J. Chem. Res., 4, 267 (2005).
- V. Rajeswar Rao, P. Vijay Kumar, V. Ravinder Reddy, and K. Manohar Reddy, *Heterocycl. Commun.*, 11, 273 (2005).
- 15. M. A. El-Taweel F and M. H. Elnagdi, J. Heterocycl. Chem., 38, 981 (2000).
- 16. A. Burger and G. E. Ullyot, J. Org. Chem., **12**, 346 (1947).
- 17. L. Q. Toan and D. Tefas, Farmazia (Bucharest), 10, No. 1, 10 (1962); Chem. Abstr., 58, 3408 (1963).
- 18. W. L. Mosby, *Heterocyclic Systems with Bridgehead Nitrogen Atom.* Pt. 1, Interscience, New York, 1961, p. 158.
- 19. H. Kondo and F. Nagasawa, J. Pharm. Soc. Jpn, 57, 1050 (1937); Chem. Abstr., 32, 3398 (1938).
- 20. T. Matsukawa, S. Ban, J. Pharm. Soc. Jpn, 71, 756 (1951); Chem. Abstr., 46, 8094 (1952).
- 21. B. Kickhhoffen and F. Krohnke, Chem Ber., 88, 1109 (1955); Chem. Abstr., 50, 13911 (1956).